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Abstract

Objectives The aim of this review article is to introduce the reader to the mechanisms,
rates and thermodynamic aspects of the processes involving the most biologically relevant
non-phenolic radical-trapping antioxidants.
Key findings Antioxidant defences in living organisms rely on a complex interplay
between small molecules and enzymes, which cooperate in regulating the concentrations of
potentially harmful oxidizing species within physiological limits. The noxious effects of an
uncontrolled production of oxygen- and nitrogen-centered radicals are amplified by chain
reactions (autoxidations), sustained mainly by peroxyl radicals (ROO

�
), that oxidize and

alter essential biomolecules such as lipids, lipoproteins, proteins and nucleic acids.
Summary Non-phenolic antioxidants represent an important and abundant class of radical
scavengers in living organisms. These compounds react with peroxyl radicals through
various mechanisms: (i) formal H-atom donation from weak X-H bonds (X = O, N, S), as in
the case of ascorbic acid (vitamin C), uric acid, bilirubin and thiols; (ii) addition reactions
to polyunsaturated systems with formation of C-radicals poorly reactive towards O2,
for example b-carotene and all carotenoids in general; (iii) co-oxidation processes
characterized by fast cross-termination reactions, for example g-terpinene; and (iv)
catalytic quenching of superoxide (O2

�–) with a superoxide dismutase-like mechanism, for
example di-alkyl nitroxides and FeCl3. Kinetic data necessary to evaluate and rationalize
the effects of these processes are reported. The mechanisms underlying the pro-oxidant
effects of ascorbate and other reducing agents are also discussed.
Keywords antioxidants; ascorbate; autooxidation; pro-oxidants; radicals

Introduction

‘Living organisms are exposed to much more severe oxidative stress than is food in a
refrigerator. Nevertheless, they do not become rancid until they, in their turn, become food.’

Burton and Ingold 1986

There are various lines of evidence supporting the conclusion that the process of autoxidation
of biomolecules (lipids, lipoproteins, proteins, nucleic acids) is deleterious to living
organisms, including humans.[1] The oxidant species responsible for such effects is dioxygen
(O2). Aerobic respiration and several enzymes produce a lot of ‘activated’ oxygen, that is
oxygen (and nitrogen) radicals that react with various cellular components and produce toxic
compounds.[1,2] The harm caused by such radicals can be judged by the fact that, for instance,
the immune system makes use of oxygen radicals to kill pathogens.[2] Small quantities of
oxygen and nitrogen radicals are also necessary for signalling transduction.[3] Indeed, in
healthy subjects, there exists a fine balance between production and removal of oxygen
radicals bymeans of endogenous and exogenous antioxidants and the inherent ability of cells
to repair oxidative damage.[3] Oxidative stress arises from an imbalance in this equilibrium,
when there is an augmented production of radicals that overwhelm existing antioxidant
defences. This imbalance is caused by various pathological events and, if not corrected, can
lead to cell death (apoptosis).[1]

Air oxidation also causes considerable economic damage because most (if not all) man-
made products suffer extensive degradation of their chemical and physical properties after
prolonged contactwithO2.

[4] Incidentally, it is important to point out that pharmaceuticals are
not immune from O2-mediated degradation and many antioxidants are commonly used in
pharmaceutical formulations.[5] Oxidation processes are however of fundamental importance
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for the degradation of the enormous quantities of anthropo-
genic and biogenic pollutants released into the environment.[6]

Air oxidation of a substrate can be drastically slowed down
by the addition of antioxidants.[4,7] In principle, oxidative
stress and its pathological effects could be prevented by
supplying effective antioxidants, but several recent clinical
trials have cast doubts on this.[8] Many compounds have
antioxidant abilities and, among them, the phenolic com-
pounds stand out for their efficacy.[4,7] The properties of the
latter have been described in a previous review published in
this Journal in 2007 in a special issue dedicated to the
‘Chemistry and Biology of Antioxidants’.[7] We now want to
expand the work to comprise other fundamental classes of
compounds, including thiols, aromatic amines, hydrocarbons,
ascorbic acid and metal ions, to give a wider, though still
limited, view of the ‘antioxidant world’.

Antioxidants are usually divided into two major groups,
preventive and chain-breaking, according to whether they
reduce the rate of chain-initiation (the former) or capture the
alternating alkyl (R

�
) and peroxyl (ROO

�
) radicals responsible

for the oxidative propagation in organicmatter (the latter).[9,10]

This division, however, is often formal because many
antioxidants can participate in different inhibitory stages.
Generally, preventive antioxidants act by converting hydro-
peroxides to non-radical products (e.g. glutathione peroxi-
dises, catalase, pyruvate, sulfur(II)-containing compounds,
phosphites), by deactivating metal ions (e.g. transferrin,
ferritin, EDTA) or by absorbing UV light (which can generate
free radicals) or quenching singlet oxygen (e.g. carotenes,
bilirubin, glutathione).[4,7,9] Chain-breaking antioxidants
reduce the oxidation rate by reacting with ROO

�
radicals

(often compounds with relatively weak O-H, N-H and S-H
bonds) or, more rarely, with carbon-centered radicals R

�
(e.g.

quinones, stable nitroxyl radicals). We will essentially focus
here on chain-breaking non-phenolic antioxidants fundamen-
tal for preserving life in mammals, giving a general overview
of their up-to-date mechanisms of action. The process of
autoxidation of organic matter is also briefly recalled.

Autoxidation of hydrocarbons

The slow oxidation of organic materials by triplet ground-state
molecular oxygen (3O2) at low to moderate temperatures is
termed autoxidation or peroxidation.[4] At high temperatures,
the process becomes extremely violent and destructive and is
accompanied by the emission of light and large quantities of
heat (combustion). The mechanism of autoxidation of
hydrocarbons or lipid chains was first elucidated after the
Second World War and is now known in great detail.[4] It can
be used as a prototypical process to understand and describe
the aerobic oxidation of other classes of organic compounds.

The major initial products of air oxidation of a
hydrocarbon (RH) in solution and at low temperatures are
(in most cases) hydroperoxides (ROOH).[4] The overall
reaction, whose driving force is given by the �rG

0
1 value

ð�rG
0
1 ¼ �rH

0
1 � T�rS

0
1Þ, can be represented as follows:

RHþ 3O2 �! ROOH ð1Þ
The enthalpies of formation of ROOHand (corresponding) RH
show that reaction 1 is exothermic by about 17–31 kcal/mol

(in the gas phase at 298 K), according to the C-H bond being
broken.[4,11,12] The exothermicity is greater for weaker C-H
bonds, that is, the value of jDrH

0
1 j increases along the series of

C-H bonds: 1∞ < 2∞ < 3∞ < benzyl. In contrast, the entropy
change of reaction 1 is expected to be less sensitive to
changes in the C-H bond. Given that the standard molar
entropies are known only for few ROOH, we can for
simplicity assume that S0mðROOHÞ ≈ S0mðROHÞ (the entropies
of alcohols are available and, although the latter are slightly
smaller than those of ROOH, the error introduced isminor).[12]

Thus, DrS
0
1 ≥ S0mðROHÞ− S0mðRHÞ− S0mðO2Þ ≈ 11−49 ¼ −38

cal/mol K (gas phase, 298K). Despite the largely nega-
tive entropy, the enthalpy of reaction 1 yields a favour-
able driving force to the reaction since at 298 K,
DrG

0
1 ≤ –ð5� 20Þ kcal/mol.

Fortunately, the large thermodynamic driving force does
not greatly alter the intrinsic chemical inertia of reaction 1.
Air oxidation at room temperature of a hydrocarbon or
other organic material usually occurs slowly.[4] The apparent
simplicity of reaction 1 is deceptive.We can ‘exclude’ a priori
a molecular mechanism because it does not obey the rule of
spin conservation. Indeed, the ground state of dioxygen is
an ‘unreactive’ triplet state (diradical) while hydroperoxide
and RH are in a singlet state. Reaction 1 can instead occur
with the (excited) singlet oxygen molecules, 1O2, since in this
case the reaction is spin-allowed (Ds = 0).[4] The actual
mechanism of reaction 1 involves a complex chain process
carried by peroxyl radicals, ROO

�
,[4] (see Figure 1), in which

ROO
�
radicals are produced by initiating reactions (start) and

disappear by recombination (end).
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Figure 1 Simplified scheme of autoxidation of a hydrocarbon RH. The

process is initiated by free radicals produced by various reactions, such as

decomposition of azo-compounds or peroxides, homolysis of hydroper-

oxides due to heat, metal catalysis or UV light. Hydroperoxides can also

be generated by singlet oxygen sensitizer, 1S0 (photosensitized oxidation).

Transition metal ions (for instance, Fe2+ and Fe3+) have an active role in

accelerating the process by decomposing ROOH to free radicals.
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In the absence of initiating agents, formation of these
radicals occurs by reactions with dioxygen,[4] mainly H-atom
abstractions, reaction 2. These reactions are very slow
because of their high endothermicity.

RHþ O2 �! R• þ HOO• �!O2
ROO• þ HOO• ð2Þ

In reality, in most systems, radical chain processes are started
by light, ionizing radiations (radon gas, cosmic radiation,
diagnostic X-rays), heat, hydroperoxides and transition metals
(usually present in traces in all organic materials). In living
organisms, many enzymes are able to initiate autoxidation in
cell membranes and lipoproteins by releasing O2

�– radicals.[1]

In kinetic studies, an efficient production of ROO
�
is achieved

by the use of radical initiators, ROOH, transition metals, light,
ionizing radiations and singlet oxygen sensitizers.[7] All these
agents ultimately yield a high flux of free radicals Y

�
that

efficiently initiate oxidation chains, reactions 3a and 3b.

Source of radicals �!Ri
Y• ð3aÞ

Y• þ RH �! YHþ R• �!O2
YHþ ROO• ð3bÞ

However, when constant and reproducible rates of
initiation Ri are required, it is best to use azo-compounds,
for example azo-bis(isobutyronitrile) (NC(CH3)2C-N=N-
C(CH3)2CN, AIBN), because they thermally form C-radicals
at a constant rate, which are then transformed (at diffusion
rates) into peroxyl radicals by O2 addition.

[7]

Peroxyl radicals formed in the initiation step propagate
autoxidation through reactions 4 and 5.

RHþ ROO• �!kp R• þ ROOH ð4Þ

R• þ O2 �!f astð←Þ ROO• ð5Þ

When the hydrocarbon RH has H-atoms in allylic or benzylic
position, reaction 4 is comparatively fast; peroxyl radicals
may also add to double bonds (see below).[4] On the other
hand, reaction 5 is, in most cases, diffusion-controlled, that
is k5 ~ 109 M

–1s–1, and essentially irreversible (there are
exceptions, see below).[13] This causes the stationary
concentration of alkyl radicals in solution at PO2

> 100 mmHg
to be very small. The combination of reactions 4 and 5
overcomes the difficulties highlighted above with a mole-
cular mechanism for reaction 1. Indeed, both reactions are
spin-allowed. The cyclic mechanism yields the ‘final’ product
of autoxidation, that is ROOH (reaction 4), and regenerates the
major chain-carrying radical, ROO

�
, (reaction 5) at the expense

of RH and O2. Thus, we can summarize that a peroxyl radical
ROO

�
functions as a ‘catalyst’ of reaction 1, oxidizing a large

number (the chain length) of RH until it combines with another
ROO

�
, reaction 6.

ROO• þ ROO• �!2kt non-radical products ð6Þ
Under steady rate of initiation, the rate law for uninhibited
autoxidation in many cases conforms to equation 7 where,
for AIBN-initiated autoxidations, Ri = a[AIBN] (a is a
constant).[14]

Rp ¼ −
d½O2�
dt
¼ kp

ð2ktÞ1=2
½RH� �R1=2

i ð7Þ

Thus, the rate of autoxidation will depend, in this case, only
on the propagation and termination rate constants, and
the concentrations of RH and AIBN (the reaction displays
zeroth-order kinetics in O2 provided that PO2

> 100 mmHg and
reaction 5 is not reversible).

Despite the foregoing reactions giving an adequate
description of the autoxidation process in hydrocarbons and
in other classes of compounds, a comprehensive picture of
the real process is far more complex (see Figure 1) and
significant differences can be found among the various
classes of organic compounds.[4] Oxidation of biomolecules
such as proteins and DNA is a particularly complex subject
matter.[4] Oxidation of proteins mediated by for example
HO

�
, NO

�
, metal ions, ONOOH/ONOO– and HOCl, may

determine proteolysis, alteration of the amino acid residues
and inactivation of enzyme activity. The DNA strands can be
cleaved by H-atom abstraction from the deoxyribose sugar
moiety by HO

�
radicals and the DNA bases are modified

because of HO
�
addition. A description (even superficial) of

all these reactions exceeds the limits of the present review.

Inhibition of autoxidation

The rate of autoxidation (Rp) of a substrate RH (equation 8)
is determined by the pseudo-first-order rate constant of
propagation, kp[RH], (reaction 4), and by the stationary
concentration of peroxyl radicals [ROO

�
]ss.

Rp ¼ kp½RH� �½ROO•�ss ð8Þ

Under steady-state conditions, the [ROO
�
]ss is calculated by

equating the rate of initiation to the rate of termination, that
is Ri = Rt. If the self-quenching reaction 6 is the major
termination process, then Rt = 2kt [ROO

�
]2ss and thus,

[ROO
�
]ss = (Ri/2kt)

½ and equation 8 gives equation 7.
Some compounds (antioxidants), AH, have the ability to

reduce the rate Rp by interfering with the chain mechanism of
oxidation even at low concentrations. In the final analysis,
these compounds are able to reduce the [ROO

�
]ss. This

decrease in [ROO
�
]ss may be consequent to: (i) decomposition

of the initiating agents without formation of radicals
(preventive antioxidants);[7,9] or (ii) more efficient termination
processes of ROO

�
. Onemajormechanism of ROO

�
quenching

relies on the ability of certain antioxidants (chain-breaking
antioxidants)[10] to donate a H-atom to ROO

�
, reaction 9.

AHþ ROO• �!k9 A• þ ROOH ð9Þ
The radical A

�
is usually resonance-stabilized and therefore

unable to propagate the oxidative chains, reactions 10 and 11.

A• þ RH �!slow AHþ R• ð10Þ

A• þ O2 �!very slow
AOO• ð11Þ

It is eventually eliminated from the system by reaction with a
second peroxyl radical, reaction 12, or by self-quenching,
reaction 13.

Non-phenolic antioxidants Mario C. Foti and Riccardo Amorati 1437



A• þ ROO• �!f ast non-radical products ð12Þ

A• þ A• �!f ast dimer or other products with or without

antioxidant activity ð13Þ

In heterogeneous systems, diffusive processes combined
with chemical transformations may also provide an escape
mechanism for A

�
or the ‘putative’ A

�
-derived radical outside

the oxidation site.[15] Finally, in biological systems, the
radical A

�
may be reduced back to its precursor AH. In a few

cases, the A
�
radical is persistent enough to be detected by

electron spin resonance spectroscopy, which allows the study
of its structure and spin distribution (see Figure 2 for two
representative phenolic antioxidants).

The rate constant k9 is a quantitative measure of
the antioxidant ability of AH (k9 is often indicated in the
literature as kinh). The stoichiometric factor, n, that is the number
of peroxyl radicals quenched per AH molecule, is another
important parameter and a useful indicator of the relative
importance of reactions 10–13. For many antioxidants, n is 2 or
close to 2, indicating that the decay ofA

�
is dominated by reaction

12 (in the case of catechols and hydroquinones, for which n = 2,
the decay of A

�
may also occur by disproportionation with

regeneration of the parent phenols).[7] On the other hand, a value
of n = 1 may indicate a fast self-quenching of the radical A

�

(reaction 13) with formation of inactive compounds. Cases of
antioxidantswithn < 1areknown[16] andareusually attributed to
the occurrence of chain-transfer reactions such as reaction 11.

Given that reactions 9 and 12 are in most cases the major
termination reactions, then Ri = Rt ≈ nk9[AH] ¥ [ROO

�
]ss

and hence equation 8 becomes:

Rp ≈
kp½RH�Ri

nk9½AH� ð14Þ

which represents the rate law for inhibited autoxidation via
H-atom transfer to ROO

�
radicals. Equation 14 shows that the

ability of AH to inhibit autoxidation, that is to give Rp ≈ 0,
depends on kp and on the oxidizable substrate concentration
[RH]. Unsaturated lipids in cell membranes and plasmatic
lipoproteins are characterized by relatively large kp (e.g. the
kp of methyl linoleate is 60 M

–1s–1 at 30∞C),[17] which thus
requires antioxidants with k9 > 104–105 M

–1s–1 and/or in
sufficiently large amounts.

Another mechanism of ROO
�
quenching by AH involves

reaction 9 followed by the reaction sequence:

A• þ O2 �! � AOO• ð15Þ

AOO• þ RH �!k16 AOOHþ R• ð16Þ

AOO•=A• þ ROO• �!k17 quenching ð17Þ

The antioxidant effect is generated by fast cross-quenching
reactions of ROO

�
with AOO

�
or A

�
radicals, reaction 17, that

is k17 >> 2kt.
[18] The radical AOO

�
contributes to the

oxidative chains, reaction 16, but its quenching effect in
reaction 17 overwhelms the pro-oxidation ability and thus the
steady-state concentrations of ROO

�
decreases. Kinetic

analysis of these reactions and several further simplifications
lead to the following approximated, though acceptable, rate
law,[18] which shows that this antioxidant mechanism
necessitates large concentrations (≈1 mM) of AH to produce
a detectable effect.

Rp ≈
kp½RH�R1=2

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kt þ 2k17k9½AH�

k16½RH�
r ð18Þ

H-atom donors

The mechanism of action of antioxidant compounds
structurally related to phenols, such as aromatic amines,
phenothiazines, pyridinols, pyrimidinols and thiols, which all
contain ‘weak’ X-H bonds (X = O, N, S), can be rationalized
on the basis of considerations similar to those adopted for
phenols.[4,7] That is, their antioxidant action relies on their
capability of donating a H-atom from the X-H bond to the
ROO

�
radicals, reaction 9. They can therefore be grouped

under the term ‘H-atom donors’, even though this classifica-
tion in some instances is only formal because an electron
transfer (ET) followed or preceded by a proton transfer (PT)
can underlie the actual mechanism (see below).

Phenols
Phenols (ArOH) are prominent examples of chain-breaking
antioxidants characterized by large values of k9 (range 104–
107 M

–1s–1).[7] Their aryloxyl radicals (ArO
�
) are able in most

cases to trap a second ROO
�
radical (reaction 12) or to self-

quench (reaction 13) often with the formation of active
compounds, that is n = 2 and sometimes n > 2,[19] but not to
continue autoxidation, reactions 10 and 11 (one exception is
represented by a-tocopheroxyl radicals isolated in human

(a)

(b)

10 Gauss

10 Gauss

Figure 2 Electron spin resonance spectra of phenoxyl radicals. Spectra

were obtained by irradiating a benzene solution of 2,4-dimethoxyphenol

(a) or sesamol (3,4-methylenedioxyphenol) (b) in the presence of di-tert-

butylperoxide. The smaller signal-to-noise ratio in the case of sesamol

(3,4-methylenedioxyphenol) indicates a faster decay of the phenoxyl

radicals from sesamol.
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low-density lipoprotein (LDL)).[15] For all these reasons,
phenols have a privileged role among chain-breaking
antioxidants and have in fact been the subject of extensive
investigations over the past decades.[4] Structure–activity
relationships are now available that allow us to predict the k9
values for any phenol.[20–22]

Pyridinols and pyrimidinols
3-Pyridinols and 5-pyrimidinols (Figure 3) represent a recent
advancement in the development of new antioxidants for
technological and possibly medical purposes.[23–25]

These heterocyclic antioxidants are air-stable, while the
most active phenolic antioxidants tend to be unstable and
turn brownish on standing in air.[24] The aryloxyl radicals
of tellurium-containing 3-pyridinols are reduced back to
their parent compounds by N-acetylcysteine in a biphasic
system.[26] Thus, these antioxidants function as catalysts of
the otherwise slow reaction: N-acetylcysteine + ROO

�
.

As with phenols, the values of k9 of these compounds are
dependent on the bond dissociation enthalpy (BDE) of the
O-H group (see Figure 4).[21,27,28] The rate constants k9 can
therefore be predicted on the basis of the O-H BDE which,
in turn, can be estimated by applying additive rules[20] or
quantum mechanics.[23,24] Electron-donating substituents
(CH3, OCH3, NH2) in ortho and para positions to the
reactive O-H favour H-atom donation. This is because these
substituents lower the O-H BDE by stabilizing the aryloxyl
radical formed upon H-atom abstraction (see Figure 4).

Aromatic amines and compounds
with weak N-H bonds
Aromatic amines containing amino hydrogens function as
inhibitors of hydrocarbon autoxidation by donating a H atom
from the N-H bond to ROO

�
.

Ar2N-Hþ ROO• �! Ar2N
• þ ROOH ð19Þ

The overall process of inhibition is frequently more complex
than inhibition by phenols. The aminyl radical is able, in fact,
to react with a second ROO

�
radical to give non-radical

products (reaction 12) but it may also give rise to the
following reaction:

Ar2N
• þ ROO• �! Ar2NOOR �! Ar2NO

• þ RO• ð20Þ
which is a chain-transfer reaction. The resulting rate law may
depend (as actually observed in a few cases) on Ri

½ and
[AH]–½ (see equation 18).[14,29]

Ethoxyquin (see Figure 5) is a common amine antioxidant
used as a preservative in pet foods because it efficiently
quenches peroxyl radicals with a rate constant k9 of 2.0 ¥
106 M

–1s–1 (in benzene at 30∞C) and a stoichiometric factor

of 2. This large k9 has been attributed to the low BDE of the
N-H bond (81.3 kcal/mol) and to the lack of steric crowding
around the reactive N atom.[27] The use of this amine has
however been limited by toxicity concerns. In 1997, the US
Food and Drug Administration requested to manufacturers of
ethoxyquin and trade associations for the pet food industry
that the maximum level contained be lowered from 150 ppm
to 75 ppm.[30] Other aromatic amines with antioxidant
abilities include phenothiazines, which are a class of drugs
used to treat mental and emotional disorders.[31] Unsubsti-
tuted representatives on the N atom behave as good H-atom
donors since the aminyl radical formed upon H-atom
abstraction is stabilized by resonance with two aromatic
rings and by the presence of the electron-releasing S atom
(see Figures 4 and 5). In the case of the simple phenothiazine
reported in Figure 5, k9 = 8.8 ¥ 106 M

–1s–1 (50∞C in
benzene) and the N-H BDE is 78.2 kcal/mol.[28]

A mechanism of formal H-atom donation to peroxyl
radicals can also be invoked to explain the antioxidant
properties of uric acid (Figure 6) and bilirubin (Figure 7).
Uric acid is a biologically relevant antioxidant that con-
tributes about 20–30% to the ‘total antioxidant capacity’

Y

X
O

H

Y

X
+ ROO + ROOHO

Figure 3 Reaction of peroxyl radicals with phenol (X = Y = CH),

pyridinols (X = N; Y = CH) and pyrimidinols (X = Y = N)
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Figure 4 Plot of log k9 versus the corresponding X-H bond

dissociation enthalpy (BDE). Ethoxyquin (X = N; ■) at 30∞C, 4,6-

di-methylpyrimidinols (X = O; ○) at 50∞C and phenothiazines (X = N; ●)
at 50∞C with different R0 and R00 substituents.
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Figure 5 Antioxidantmechanism of ethoxyquin (a) and phenothiazine (b)

Non-phenolic antioxidants Mario C. Foti and Riccardo Amorati 1439



of plasma.[32] In this regard, the cause of the increased serum
total antioxidant capacity observed after the ingestion of red
wine or apples is most likely due to changes in the plasmatic
urate concentration and not to the polyphenols in red wine or
apple.[33,34] At physiological pH, uric acid is almost entirely
ionized to the monoanion (urate), pKa = 5.4,[35] which
accumulates in human plasma to concentrations normally
over the range of 0.2–0.4 mM before being excreted in the

urine.[1] This anion reacts with peroxyls by an electron
transfer–proton transfer mechanism (see Figure 6) with a rate
constant of 3 ¥ 106 M

–1s–1.[35,36] Unlike the ascorbate anion,
the urate anion is not able to reduce the a-tocopheroxyl
radical to its parent compound.[37,38]

The human body produces about 275 mg of bilirubin per
day, which is derived from the catabolism of haemoglobin
(~80%) and from other haeme sources (~20%).[1] Bilirubin
is transported in the bloodstream by albumin (to which it
is bound in a 1 : 1 stoichiometry) because it is insoluble in
aqueous media at neutral pH.[1] Thus, the evaluation of its
in-vivo antioxidant activity is difficult. However, in-vitro
experiments seem to indicate that bilirubin bound to albumin
contributes by about 5–10% to the ‘total antioxidant
capacity’ of blood plasma.[39] Bilirubin presumably reacts
in apolar media with peroxyl radicals via H-atom transfer
from the N-H bonds (see Figure 7).[40]

The small increase in the antioxidant activity of bilirubin
dimethyl ester (Figure 7) observed on passing from apolar
(k9 = 22.5 ¥ 104 M

–1s–1, n = 2 in styrene/chlorobenzene at
30∞C) to polar solvents (k9 = 37.9 ¥ 104 M

–1s–1, n = 1.8, in
1.74 M styrene/11.1 M methanol at 30∞C) was tentatively
explained by a switching of the reaction mechanism from
H-atom transfer to an electron transfer–proton transfer
mechanism.[40–42] Intramolecular hydrogen bonding in
the intermediate pyrrolyl radical of dipyrrinones has been
shown to have a major role for the antioxidant activity of
these compounds because it stabilizes the radical (see
Figure 7). The formation of a similar hydrogen bonding
might also influence the antioxidant activity of biliverdin
(bilirubin precursor) and possibly bilirubin.[40]

Ascorbic acid
Ascorbic acid has long been known to have antioxidant
properties especially in support of oil-soluble antioxidants
(tocopherols).[43] Its salts of Na and Ca and the palmitate and
stearate esters are commonly used as food additives.[44] Ascorbic
acid has four stereoisomeric forms of the chemical formula
C6H8O6. The L-ascorbic acid stereoisomer (see Figure 8),
commonly known as vitamin C, is present in the human
plasma over the range 30–100 mM.[1,2] Ascorbic acid is a
relatively strong acid (pKa = 4.04) and at pH 7.4 is entirely
ionized; thus, the anion is the species involved in the antioxidant
chemistry of vitamin C.[45] L-Ascorbate (hereafter simply
ascorbate) reacts with free radicals via a concerted electron
and proton transfer mechanism (see Figure 8).[46]

The ascorbyl radical anions Asc
�– so formed dispropor-

tionate rapidly with a rate constant in water of 3 ¥ 106 M
–1s–1

yielding dehydroascorbic acid (DHA) and regenerating
ascorbate,[46] reaction 21.

2Asc•– þ Hþ �! DHAþ AscH– ð21Þ
Surprisingly, in anhydrous organic solvents (perhaps because
of the lack of H+ ions)[46] the radical Asc

�– becomes persistent
(for hours, room temperature).[46] In vivo, the radical Asc

�–

and DHA can be converted back to ascorbate by tissue
enzymes at the expense of glutathione (GSH) and NADH.[1]

Ascorbate is probably the most effective water-soluble
antioxidant in the plasma. Frei et al.[47] showed that ascorbate
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protects plasma lipids against AAPH-initiated autoxidation
better than other antioxidants such as urate or a-tocopherol.
This is due to the fact that the AAPH initiator is water-soluble
and produces, by thermal decomposition, positively charged
peroxyl radicals[48] in the aqueous phase (reaction 22), which
are promptly intercepted by the ascorbate anions (reaction 23).
This delays the initiation of autoxidation in the lipid phase
until ascorbate is entirely consumed (lag phase).

þðNH2Þ2CðCH3Þ2CN¼NCðCH3Þ2CðNH2Þ2þ �!
D

−N2ðAAPHÞ
2
þðNH2Þ2CðCH3Þ2C• �!O2 þðNH2Þ2CðCH3Þ2COO• ð22Þ

þðNH2Þ2CðCH3Þ2COO• þ AscH− �!
þðNH2Þ2CðCH3Þ2COOHþ Asc•– ð23Þ

Indeed, ascorbate reacts rapidly with peroxyls in water: with
CH3OO

�
, the rate constant at pH 7, obtainedbypulse radiolysis,

is 1.7 ¥ 106 M
–1s–1.[49] In SDS micelles containing linoleic

acid, the rate constant k9 for the reaction of ascorbatewithROO
�

at the water/lipid boundary reduces to 3.2 ¥ 103 M
–1s–1

while for the lipophylic analogue ascorbyl palmitate,
k9 = 2.1 ¥ 105 M

–1s–1.[50] Ascorbate is also able to scavenge
otherwater-soluble radicals amongwhich areO•�

2 =HOO•, HO
�
,

the urate radical and nitroxide radicals, and non-radical species
such as HOONO/ONOO– and HOCl.[1] Most importantly,

ascorbate can regenerate a-tocopherol from the a-tocopher-
oxyl radical at the lipid/water interface of LDL particles.[51]

The high reactivity of ascorbate towards free radicals is
due to the low dissociation enthalpy of its O-H bond. Recent
thermochemical measurements have set this O-H BDE at
about 70 kcal/mol in acetonitrile and ≥ 74 kcal/mol in
water.[46] For comparison, the O-H BDE of a-tocopherol
(the major lipid-soluble chain-breaking antioxidant in the
human plasma) is 77 kcal/mol.[20,22]

Pro-oxidant effects of ascorbate
Pro-oxidant activity of ascorbate has occasionally been
observed in in-vitro and in-vivo experiments.[1] Recent
studies have shown that ascorbate, at pharmacologic
concentrations of 10 mM, is capable of generating a hydrogen
peroxide-dependent cytotoxicity towards a variety of cancer
cells in vitro.[52] These pro-oxidant effects are most likely
linked with the presence of trace redox-active metal
ions,[53,54] such as Fe3+ or Cu2+, although other mechanisms
not involving metal ions have also been invoked (see below).
Cupric ion increases greatly the cytotoxicity[55] of ascorbate
and its rate of autoxidation.[54] In fact, ascorbic acid
undergoes metal-catalysed autoxidation according to the
following reactions:[56,57]

AscH– þ O2 �!Metal ions
Asc•– þ Hþ þ O•–

2 ð24Þ

AscH– þ O•–
2 þ Hþ �! Asc•– þ H2O2 ð25Þ

Asc•– þ O2 þ 2Hþ �! DHAþ H2O2 ð26Þ
The presence of metal ions is essential since the treatment of
the solutions with the Chelex-100 resin for the removal of
contaminating metals results in the suppression of ascorbate
autoxidation.[54] Formation of superoxide anionO2

�– andH2O2

can explain the pro-oxidant activity of AscH–, especially in
conjunction with the Fenton reactions 27 and 28.[58–60]

Fe2þ þ H2O2 �! Fe3þ þ HO• þ HO– ð27Þ

Cuþ þ H2O2 �! Cu2þ þ HO• þ HO– ð28Þ
Hydrogen peroxide is also released in the singlet oxygen
quenching[61] by AscH– and in the catalytic oxidation of the
latter by quinones[62,63] (reactions 29 and 30). Quinones (Q)
are in fact known to be highly cytotoxic because of enzymatic
redox-cycling mechanisms.[62,63] Non-enzymatic reactions
may also involve ascorbate at physiological concentrations,
reactions 29 and 30.

AscH– þ Q �! Asc•– þ Hþ þ Q•– ð29Þ

Q•– þ O2 �! Qþ O•–
2 ð30Þ

Finally, nitrous acid is reduced by ascorbate to NO radical,[64]

which in the presence of O2
•– produces peroxynitrite anion

ONOO–. Its conjugated acid HOONO decomposes rapidly
yielding HO

�
and NO2

�
radicals.[65]
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�
→ Asc
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�– + ROOH.
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Thiols and sulfenic acids
Alkyl and aryl thiols react with most radicals by H-atom
transfer.[66] Typical values of the rate constants with
C-centred (R

�
),[66] HO

�[66] and ROO
�[67,68] radicals are

108, >109 and 103–105 M
–1s–1, respectively. The resulting

thiyl radicals can give rise to the reactions reported in
Figure 9,[1,4,66] among which the reaction with dioxygen is
remarkable. This reaction is reversible,[66] with the forward
rate constant of the order of 107 M

–1s–1 for alkyl thiyl radicals
and <104 M

–1s–1 for aryl thiyl radicals. The RS
�
+ RS

�
self-

reaction is essentially diffusion-controlled, k ~ 109 M
–1s–1;

the RS
�
radical can also react rapidly with the anion RS– but

the pH influences the observed rate constant since the
concentration of RS– is pH-dependent. Thus, the prevailing
process of decay of the radical RS

�
depends on the ratio

[RS
�
]/[O2] and on the pH. The thiyl radical can also add

reversibly to olefins, dienes and b-carotene and thus it may
be responsible for a catalysed cis → trans isomerization of
cis-unsaturated phospholipids.[69] In this regard, retinol was
found to be effective in preventing RS

�
-mediated cis–trans

isomerization of lipids.[70] Sulfur can expand its valence shell
to form sulfonyl (RS

�
O2) and sulfonyl peroxyl (RSO2OO

�
)

radicals; sulfinyl (RSO
�
) radicals are formed by the reaction

of thiyl peroxyls (RSOO
�
) with thiols, see Figure 9.[66]

Thiols, disulfides and more in general sulfur(II)-contain-
ing compounds reduce ROOH to ROH, therefore acting as
preventive antioxidants.[4] The processes are rather complex
and necessitate the presence of protic solvents (acid
catalysts).[4] Dialkylsufides are oxidized by ROOH to
sulfoxides R0S(O)R0 and then to sulfones R0SO2R

0, whereas
ROOH is reduced to ROH. The reaction is acid-catalysed; in
aprotic solvents the ROOH molecules can also act as a
catalyst.[4]

The most biologically relevant example of a thiol with
antioxidant properties is glutathione (Figure 10), which in its
reduced form (GSH) is able to remove hydroperoxides
formed by cell metabolism under aerobic conditions with the
catalysis of glutathione peroxidase (GPx), reaction 31.

2GSHþ ROOH �!GPx GSSGþ ROHþ H2O ð31Þ

GSH reacts with any oxygen[71,72] radical (see above) but
also with non-radical species such as 1O2 (singlet oxygen),

[1]

HOCl (hypochlorous acid)[1] and ONOO– (peroxynitrite).[73]

The GS
�
radical at physiological pH can generate the

superoxide anion through the reaction sequence:

GSH �!−H GS• �!GS
−

GSSG•− �!O2
GSSGþ O•−

2 ð32Þ

Hence, to minimize the pro-oxidant potential of GSH
in vivo,[1] there might be the need for co-assistance by
superoxide dismutase (SOD) (to remove O2

�–) or ascorbate
(to quench the GS

�
radical), reaction 33.

AscH– þ GS• �! Asc•– þ GSH ð33Þ
The R-stereoisomer of lipoic acid, in its amide form, is an
essential component of various enzymes such as the pyruvate
dehydrogenase complex, and thus is essential for the
aerobic metabolism.[1] In the reduced form (dihydrolipoic
acid, Figure 10), lipoic acid is a potent reductant that reacts
with a wide range of free radicals and other oxidants (e.g.
HO

�
, O2

�–, ROO
�
, HOCl). It is also able to reduce GSSG to

GSH and ubiquinone-10 (coenzyme Q-10) to ubiquinol-10.[74]

Similar to other strong reductants, in the presence of transition
metals it behaves as a pro-oxidant, following a reaction
pathway similar to that previously reported for ascorbate.[74]

The low concentration of lipoic acid in human tissues,
however, makes unlikely its relevance as an endogenous
antioxidant.[1]

Sulfenic acids (RSOH) are produced by sulfides contained
in garlic and onion and are emerging as a novel class of
powerful peroxyl radical scavengers.[75] On chopping fresh
garlic cloves, the secondary metabolite alliin is converted
into allicin by the enzyme alliinase via 2-propene sulfenic
acid (see Figure 10).[76] The latter is also produced by allicin
decomposition during storage (Figure 10).[75] Given the very
low RSO-H BDE of about 69 kcal/mol,[75] sulfenic acids
react with the ROO

�
radical at diffusion rates, while allicin or

garlic-derived disulfides lack any antioxidant activity.[77]

Antioxidants with mechanisms other
than H-atom donation

Several compounds exhibit antioxidant properties that cannot
be traced back to reaction 9, that is, to ROO

�
quenching via

H-atom donation from weak A-H bonds. These compounds
include hydrocarbons, lactones, trisubstituted aromatic
amines and even transition metal ions. We briefly describe
several of these compounds in the following sections; for
further information on those not included please refer to the
original works.[78–80]

Hydrocarbons
There are two general mechanisms by which certain readily
peroxidizable hydrocarbons (AH) may display antioxidant
ability.[18] Hydrocarbons in class 1 form carbon-centred
radicals, reaction 9, strongly stabilized by resonance, A

�
. The

reaction of A
�
with dioxygen (reaction 34) is thus reversible

and the equilibrium favours A
�
+ O2 rather than AOO

�
. The

radical A
�
is also able to quench rapidly the chain-carrying
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Figure 9 Decay reactions of the thiyl radical in the presence of
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1442 Journal of Pharmacy and Pharmacology 2009; 61: 1435–1448



peroxyls ROO
�
. The entire antioxidant mechanism can be

illustrated via the following reactions:

A• þ O2  �! AOO• ð34Þ

ROO• þ A• �! non-radical products ð35Þ

ROO• þ AOOH �! ROOHþ AOO• ð36Þ
The reversibility of oxygen addition to A

�
explains why the

antioxidant effectiveness of AH is higher at low oxygen
partial pressure.[81] Reaction 36 followed by reactions 34 and
35 lets us foresee the ability of the hydroperoxide AOOH to
work as an antioxidant (especially at low oxygen partial
pressure) in conjunction with AH. Typical class 1 hydro-
carbon antioxidants are triphenylmethane,[81] b-carotene[81]

and some lactones recently introduced by Scaiano and co-
workers.[78,79]

Class 2 hydrocarbon antioxidants (see section: Inhibition
of autoxidation) decrease the steady-state concentration of
ROO

�
because the rate of the cross-reaction between AOO

�

and ROO
�
is much greater than the rate of the self-reaction

ROO
�
+ ROO

�
. Faster terminations reduce the rate of

autoxidation of the substrate RH. Many examples are reported
in the literature on the reduction of the autoxidation rate of
hydrocarbons (cumene) by other oxidizable substrates such
as tetralin[82] or diallyl disulfide.[77] A remarkable example
regarding the inhibition of the autoxidation of linoleic acid by
a class 2 hydrocarbon is given by g-terpinene (and 1,4-
cyclohexadiene), a monoterpene hydrocarbon present in
essential oils.[18] It retards the AIBN-initiated autoxidation
of linoleic acid with an activity comparable with that of a
phenol with a rate constant k9 of (1–3) ¥ 103 M

–1s–1, for
example C6H5OH. g-Terpinene oxidizes to p-cymene in a
chain-reaction in which the chain-carrier is HOO

�
. In the

autoxidation of linoleic acid the chain-carrier is LOO
�
and the

self-reaction LOO
�
+ LOO

�
occurs with a rate constant of

about 3 ¥ 107 M
–1s–1 (in cyclohexane at 50∞C). On the other

hand, the cross-reaction HOO
�
+ LOO

�
was suggested to

occur, on mechanistic grounds, at close to the diffusion-
controlled limit. The overall mechanism of action is
represented by the reactions reported in Figure 11. It is
therefore clear that addition of small quantities of g-terpinene
to linoleic acid or other edible lipids may provide an
alternative or supplementary strategy for obtaining large
increases in their oxidative stability and shelf life.

b-Carotene
b-Carotene is a polyunsaturated hydrocarbon present in the
hydrophobic domains of LDL, proteins, cells and tissues.[1] In
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human plasma its concentration is over the range 0.3–
0.6 mM.[1] Although the structure of b-carotene (and of all
carotenoids) could suggest quite an important role for
protecting polyunsaturated fatty acids against autoxidation,
there is a general consensus on the fact that the major role of
b-carotene is to serve as precursor of vitamin A.[1] However,
b-carotene is able to quench various radicals including the
NO2

�
radical,[4] which is quenched by electron transfer with a

rate constant of 1.1 ¥ 109 M
–1s–1, the GS

�
radical[4] quenched

by double-bond addition, with a rate constant of about
2 ¥ 108 M

–1s–1, the peroxyl radicals (see below) but not the
a-tocopheroxyl radical.[83] b-Carotene is also, as with most
carotenoids, a powerful quencher of singlet oxygen, 1O2.

[84]

Peroxyl radicals add rapidly to polyenes when the resulting
C-radicals are strongly stabilized by resonance (see Figure 12),
the rate constants being of the order of 104–105 M

–1s–1.[85,86]

At low oxygen partial pressure, the b-carotene�-OOR
radical may quickly quench a second peroxyl radical. In fact,
addition of dioxygen to b-carotene�-OOR occurs reversi-
bly[81] and is characterized by relatively low rate constants.
El-Agamey and McGarvey[87] have recently reported that the
rate constants of oxygen addition to carotenoid radicals, kO2

,
display a moderate dependence on the number of conjugated
double bonds present in the radical. For carotenoid radicals
with 7–11 double bonds, the measured values of kO2

are over
the range 103–104 M

–1s–1.
The above mechanism explains why the antioxidant

effectiveness of b-carotene strongly depends on the oxygen
partial pressure, PO2

. At low oxygen partial pressure typical
of human tissues (PO2

£ 50 mmHg), in-vitro experiments
suggest that b-carotene can function as an antioxidant,
while with increasing PO2

the pro-oxidant effects may
overcome its antioxidant potential.[88] Since PO2

is greatest
in the outermost cells of the lung, these cells might be
particularly subject to the toxic effects of b-carotene.
Recently developed human chemoprevention trials have

shown that administration of b-carotene actually increases
lung cancer incidence and mortality in human smo-
kers.[8,89,90] The compounds formed by fragmentation of
the b-carotene oxidation products may contribute to its
in-vivo toxic effects.[4]

SOD-like antioxidants
Nitroxides
Some small molecules exert an antioxidant action by
accelerating the dismutation of O2

�– to H2O2 and O2, thus
mimicking the endogenous enzyme SOD.[1] This mechanism
can be exemplified by cyclic nitroxides with tertiary alkyl
groups linked to the nitrogen atom (R2NO

�
), a well known

class of persistent radicals (Figure 13).[91] These nitroxides
can in principle be either reduced (path A)[92] or oxidized
(path B)[93] by superoxide to hydroxylamines (R2NOH) or
oxoammonium cations (R2NO

+), respectively, which are in
turn converted to the parent nitroxides by another molecule
of superoxide (see Figure 13). For instance, the nitroxide
OXANO (2-ethyl-2,5,5-trimethyl-3-oxazolidin-1-oxyl) cata-
lyses superoxide dismutation via path A,[92] while TEMPO
(2,2,6,6-tetramethylpiperidine-1-oxyl) follows[93,94] path B.
The catalytic efficiency of nitroxides following the reaction
path B is reported to be 100-fold greater.[93] The occurrence
of either mechanism seems to be dependent at physiologic
pHs on the reduction potentials of the species involved in
the catalytic cycle.[93] Salen–manganese complexes (see
Figure 13) capable of promoting both O2

�– and H2O2

dismutation, by mimicking the SOD and catalase activ-
ities,[95] were found to be effective against ageing pro-
cesses[96] and pathologies related to oxidative stress.[97,98]

Recently, it has been recognized that TEMPO also
possesses chain-breaking activity, due to electron transfer
to peroxyl radicals, with the subsequent protonation of the
peroxide anions by water. Measured k9 values range from
1.4 ¥ 104 M

–1s–1 in acetonitrile/water [13] to 2.8 ¥ 107 M
–1s–1

in pure water.[99] Nitroxides can be reduced in vivo to
the corresponding hydroxylamines (R2NOH),

[91] which
react with peroxyl radicals with a rate constant of about
5 ¥ 105 M

–1s–1 in apolar solvents.[100]

Redox active transition metals
The ability of transition metal ions to promote autoxidation in
organic materials has been recognized for a long time.
Transition metals decompose ROOH and H2O2 with the
formation of highly reactive radicals.[57,101] Rather surpris-
ingly, however, a few metal ions have been claimed to also
possess antioxidant properties,[102] though controversial opi-
nions have been expressed on this.[103,104] However, it is worth
noting the fact that all antioxidant enzymes (e.g. catalase,
superoxide dismutase, glutathione peroxidase) contain metal
ions essential to their activity. Examples of documented
antioxidant activity of freemetal ions in vitro do exist. Foti and
Ingold[105] have recently reported that low concentrations of
FeCl3 can retard the autoxidation of g-terpinene to p-cymene
in acetonitrile with a SOD-like mechanism (see Figure 14).
CuCl2 also displays remarkable antioxidant properties but
its effects are poorer (see Figure 14).[105] Conversion of
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g-terpinene (TH2) to p-cymene (Cy) occurs via a chain-
reaction having HOO

�
as a chain-carrier.

TH2 þ O2 �!HOO
•

Cyþ H2O2 ð37Þ
Addition of micromolar concentrations of FeCl3 generates a
lag-phase (during which autoxidation of g-terpinene is very
slow) followed by oxidation at an almost steady rate (slower
than the rate observed in the absence of FeCl3). These effects
were interpreted in terms of faster chain-terminations due to
direct reactions of the metal ions with the HOO

�
radical.

There is, in fact, experimental evidence indicating that
peroxyl radicals can complex (reversibly) with transition
metal ions. In the case of the hydroperoxyl radical, chain-
termination may occur through the following fast processes:

Fe3þ þ HOO• ⇄ ½FeIV- OOH�3þ �!HOO
•

Fe3þ þ H2O2 þ O2 ð38Þ

Cu2þ þ HOO• �! Cuþ þ O2 þ Hþ ð39Þ

Cuþ þ HOO• þ Hþ �! Cu2þ þ H2O2 ð40Þ

in which the metal ions behave catalytically. Unlike FeCl3,
CuCl2 does not give rise to a SOD-like mechanism because
as the [H2O2] builds up, reactions 37 and 40, the Cu+ ion
formed in reaction 40 will induce a chain-transfer via the
rather fast (in water) reaction 41.[105]

Cuþ þ H2O2 �!Cu2þ þ HO� þ HO• ð41Þ

Conclusions

Much of the chemistry involved in the mechanisms of action
of antioxidants in biological systems is now fairly well
understood due to the exciting work started in the fields
of polymer and food stabilization. We now recognize that
dietary and endogenous antioxidants are essential to healthy
living. In 1986, Burton and Ingold[106] emphasized the
extreme importance of antioxidants in preserving all forms of
life by the acute though dramatic observation that: ‘living
organisms are exposed to much more severe oxidative stress
than is food in a refrigerator. Nevertheless, they do not
become rancid until they, in their turn, become food. What
this means is that living organisms have some mechanism or
mechanisms by which they protect themselves against
autoxidation.’ Thus, the equations: oxidative stress = illness
and antioxidants = health were considered to be absolute
truths until recently. Nowadays, the limitations of this over-
simplified view are clear, and the complexity of this research
field is being fully disclosed. Some chemical observations
valid in vitro may lose their strength when applied to living
organisms. For instance, the concept of ‘total antioxidant
capacity’, which is undoubtedly useful in oil and polymer
stabilization, may lose meaning in biological systems since
regeneration of reducing species by enzymes plays a
fundamental role.[107] Moreover, it is now clear that the
reactive oxygen species are not only involved in harmful
oxidative reactions, but are also responsible for the regulation
of important biological processes, such as the fine balance
between proliferation and apoptosis.[3] It is therefore possible
that an excessive intake of antioxidants can lead to
unexpected and even undesired outcomes.[8,89,90]

In this review, the interactions between various antiox-
idants and possible pro-oxidant effects have been outlined
and the chemical grounds for a deeper comprehension of the
processes have been given. For instance, ascorbate is one
of the most potent water-soluble reductant/antioxidants in
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nature, but at high concentrations and in the presence of
redox-active metal ions it may become a source of hydrogen
peroxide and superoxide. Unexpected antioxidant effects are
displayed by oxidizable hydrocarbons such as g-terpinene,
which favours the decay of alkylperoxyl radicals by releasing
hydroperoxyl radicals during autoxidation. Besides these
‘sacrificial’ antioxidants, which irreversibly react with free
radicals, several antioxidant compounds that act catalytically
with SOD-like mechanisms are gaining increasing interest.
Alkylnitroxides, salen–Mn complexes and FeCl3 are inter-
esting examples of these catalytic antioxidants. Indeed, a
deeper knowledge of the chemistry of radicals and
antioxidants can give a valuable contribution to the
development of novel antioxidant compounds.
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